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1. Is it possible to hit the goal from a corner kick? 
There are several videos on YouTube, demonstrating that it can actually be done (although it is 
extremely technical to perform). 
(Whether you find that a theoretically calculation is equally technical depends on who you are). 
However, if we use some empirical formulas for the air resistance on a solid surface, it is possible to 
establish three coupled differential equations that can be solved numerically, and which 
demonstrates that it is (also theoretically) possible to score a goal from a corner kick. 

1.1 Establishing the geometry of the problem 
The figure below shows a (European) football with radius r, moving in the y-direction, which 
means that the air resistance is coming from the opposite (-y) direction. 
A point on the football is designated by the polar coordinates (r, θ, φ). The spatial geometry may 
visually be hard to appreciate, so there is made a cut parallel to the x – y plane, where the velocity 
of the wind 0v


 is dissolved into a tangential and a radial direction.  

vr designates the radial component of the wind , and vt  its tangential component. 
From the figure to the right, we see that: 
 
   cossin 00 vvvv tr   

Figure 1.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the ball rotates around the z – axis with angular frequency ω, then a point (r, θ, φ) will have a 
velocity in the y - direction, which is the sum of the balls velocity in the y - direction plus the y - 
component of the balls rotational velocity.  
The speed in the uniform circular motion is given by: v = ωr, and the speed in the circular motion, 
(corresponding to the polar angle θ) is therefore: vθ =ωrsinθ and the y-component becomes: 
 
(1.1)                vθy =ω∙r∙sinθ∙cosφ. 
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The velocity of a point on the football in the y-direction is thus:  cossin0 rv  , and the radial 

and the tangential component are therefore: 
 
(1.2)  cos)cossin(sin)cossin( 00 rvvrvv tr   

 
We are interested in finding two forces, namely the force that acts opposite to the direction of 
motion of the ball, and the force in the x-direction, which acts perpendicular to the direction of 
motion of the ball.  
To do so, we must calculate the components in the x- and y-direction of the radial velocity.  
The radial velocities changes the speed and the direction of the ball, whereas the tangential 
velocities may possibly change the angular velocity.  
In the following we shall, however, ignore the tangential velocities, since it is a minor effect. 
 
From the figure above, you may convince yourself that the x- and y-components of the radial 
velocities are: 
 
(1.3)   sincos rryrrx vvvv    

So we have: 
 
(1.4)  sinsin)cossin(cossin)cossin( 00 rvvrvv ryrx   

 
For the air resistance, which acts opposite to the direction of motion, we shall apply the semi-
empirical expression:  
 
(1.5)  22½ vAvcF w    

 
ρ is the density of the air. cw is the so called form factor, A is the cross section of the ball, and v is 
the velocity of the body in the direction of the collective motion. 
 
The forces Fx that act in the x-direction, which correspond to the angles φ and π – φ are opposite 
directed, with respect to v0, as it also appears from the expression for vrx, but since we are going to 
square the velocities, we must evaluate Fx as: 
 
(1.6)   Fx = Fx(φ) - Fx(π – φ) 
 
Having found the  force Fx , acting in the point (r,θ,φ), it should then be multiplied by the area 
element dA of a sphere:  ddrdA sin2  and afterwards integrated over the semi-sphere: 

],½0[],0[   and . 
 
(1.7)  dAvdAvcdF w

2
1

2½    

 

 (1.8)   
)sincossin))cos(sin(

sincossin)cossin(()()(
2222

0
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



ddrrv

ddrrvdFdF xx
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The two terms are identical apart from a change of sign in the second term since 
 cos)cos(  . The two terms will therefore cancel each other, apart from two times the 

double product from the quadratic terms. After a minor reduction, we find: 
 
(1.9)  ddrvdFdF xx

2323
01 sincossin4)()(   

 
In the following, we shall make use of evaluating integrals of the type. 
 

(1.10)   xdxx mn cossin    

 
If n is even and m is odd (or vice versa) then it is relatively simple to evaluate the integrals by using 
the formula cos2x = 1 - sin2x , (which is the same as: sin2x = 1 - cos2x), and followed by a 
elementary substitution.  
If both m and n are even, then the integral may be evaluated by a successive application of the same 
formulas and subsequently reducing the power of the trigonometric functions using the formulas: 
 

(1.11)  
2

2cos1
sin

2

2cos1
cos 22 x

xand
x

x





  

 
If both n and m are odd, one may apply the formula: 
 
(1.12)   xxx cossin22sin   
 







0
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3
01 sincossin4

2

ddrvFx  
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2sin

22

2cos1
sin

0
4
1

00

2 






 


 dd  

 
 

(1.13) 

 
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2

2

22

0
0

5
5
13

3
142

0

22

0

23















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The final expression for Fx  then becomes:  
 

(1.13)   3
015

4

2

1
rvcF wx  . 

 
Notice that there are no transverse forces to the direction of motion, if ω = 0. (Of course) 
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The expression for the velocity in the y-direction is stated above:  2
0 sin)cossin( rvvry   

The expression for the y- component of the radial force is: 22½ vAvcF rywy    

This expressionshould be integrated over the semi-sphere. 
 

(1.14)    
  


0 0

222
01

0 0

22
1 sin)sin)cossin((sin ddrrvddrvF ryy  

 
The term that has cos φ as a factor will disappear in evaluating the integral,  since cos φ is odd in 
the interval from 0 to pi, while all the other factors are even.  
When the integrand is evaluated, we are left with. 
 

(1.15)   
 


0 0

2342242
0

2
1 )cossinsinsinsin( ddrvrFy  

 
In almost in the same manner as we did above we find for the 4 integrals. 
 

(1.16)       
 
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0
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cossin d  

 
What is demonstrated here doing it by hand can of course be checked using a CAS, (but I was 
taught mathematics before the appearance of mathematical computers) 

2. The equations of motion 
We are then able to write the expression for Fy , the force opposite the direction of motion.  
 

(2.1)  )
124

3
(

2

1 222
0

2 rvrcF wy    

 
Actually we have assumed that the football moves only in the y-direction. But this is not strictly 
correct, if you kick a ball in the air from the corner. Since the air resistance is always opposite to the 
velocity then the correct expression is: 






 vAvc
v

v
AvcF ww  ½½ 2  

Although the velocity might not be entirely perpendicular to the axis of rotation, we shall keep the 
expression for Fx, since anything else would be mathematically reckless, and the correction will 
possibly have a minimal effect on the results. 
 
The acceleration is as usual found by dividing the forces by the mass of the football. Below is the 

acceleration written with the help of the three base vectors ( kji


,, ) 
 

(2.2) 

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Written out in coordinates after the x, y and z-axis, we have:  
 

(2.3) 
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These three coupled second order differential equations, have no analytic solution (I believe) and 
even if you should succeed (but you won’t) to find an analytic solution, it would probably be 
difficult to interpret. 
But the equation may be solved numerically and the solutions plotted in a genuine 3D projection.  
 
Inserting the numerically values for the constants: ρair =1.293 kg/m3. The form factor cw = 0.4. 
The radius of the football: r = 0.10 m. The mass of the football:  m= 0.400 kg, we get the following 
numerical equations. 
 

(2.4)  

82,91052,1

1068.11052,1

1040.51052,1
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3. Graphic solution to the equations of motion 
We have put the width of the football lane to 60 m. 
The difficult task is now to determine (guess on) the speed of the ball, the angles θ, φ, which 
determine the direction, and the right screw (rotation) so that the football ends in the goal               
(if possible at all on the theoretical conditions?).  
Certainly, it was not the first try that led to an acceptable result, but after experimenting a bit, the 
following values seem to accomplish the job.  
 
Speed v0 = 22.5 m/s, angular velocity: ω = 31.4 /s, Polar angle: θ = 600, Azimuth angle φ = 800 . 
 
Using these values, it appears from the 3D figures that the football will have the right deflection in 
the air, and end up in the goal. But studying the solution more carefully, it turns out to be a 
deception, caused by the 3D projection. With these values the football lands just outside the goal.  
This is revealed if you look at the graphs for x(t), y(t) and z(t) where can see, that although the ball 
is near the goal, it is not inside. (It does not cross the x-coordinate.) 
 
So the graphs shown below, where the football actually enters the goal, are made with an unrealistic 
high rotation of the ball. 
 
Whether it is actually possible to determine realistic values of speed, angles and air resistances to 
prove theoretically that you can score on a corner kick, I don’t know, but perhaps it is not so 
important after all. There are many unknown factors, when dealing wit turbulent air drag. 



  Can you score on a corner kick 6  

The calculations show, however, clearly that if you kick the ball from the left corner, and kick the 
football in the right side obtaining a positive rotation of the ball, and using the semi-empirical 
formulas for the air drag, then the trajectory will be deflected to the left towards the goal.  
Also the formulas for turbulent air resistance are mostly empirical, and they depend rather heavily 
on the shape of the moving object. 
 
The first two of the three graphs show the trajectory of the same corner kick, but observed from 
different seats of the spectators.  
 
In the third graph is plotted the graphs  for x(t), y(t) and z(t) are with and without air resistance.  
It is seen that the ball actually crosses the x-axis and lands inside the goal.     
 
  
 
Kick from the origin. The two trajectories of the ball are         Same kick, but seen from another perspective. 
with and without air resistance. The ball passes the x-axis. 
            
     
 
 
 
 
 
 
 
 
 
 
 
 
 

The two trajectories for x(t), y(t) and z(t) are with and  
without air resistance. It is seen that the ball crosses 
the x-axis and lands inside the goal.  
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4. Postscript. The old days of scientific programming 
The numerical solution of the 3 coupled second order differential equations and the 3D graphical 
representation of the solutions comes from a program that I developed in the early 90ties. 
The program is a DOS program, written in Borland’s Turbo 7.0. There were no windows, no 
menu’s nothing that we later considered as granted. You had to do it all for your self, from lines, 
squares, circles, colours in the graphic system. 
You could not print the graphics screen from the program, and the ability to make a screen dump 
ended with Windows 98. After Windows XP, dos programs can no longer run on a computer. 
So the program is run on a Windows XP computer, and the screen dumps are done on a Windows 
98 computer. 
The obvious question is, why do I not use a modern program, and the answer is that even if I am 
aware of the existence of such programs, I have not found one which is able to the same. But there 
might of course. 
 


